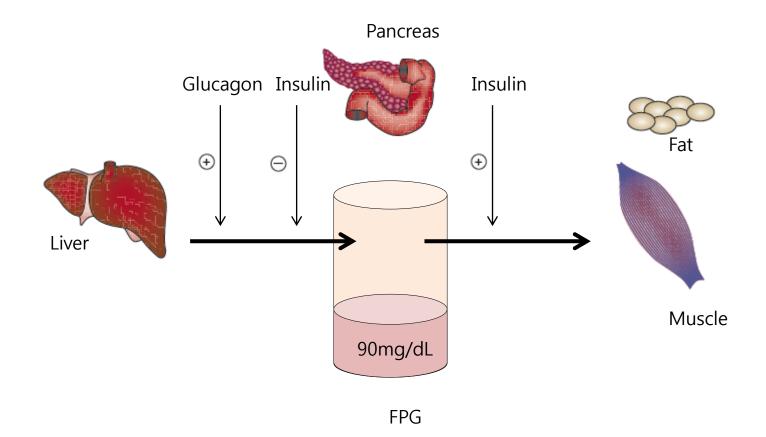
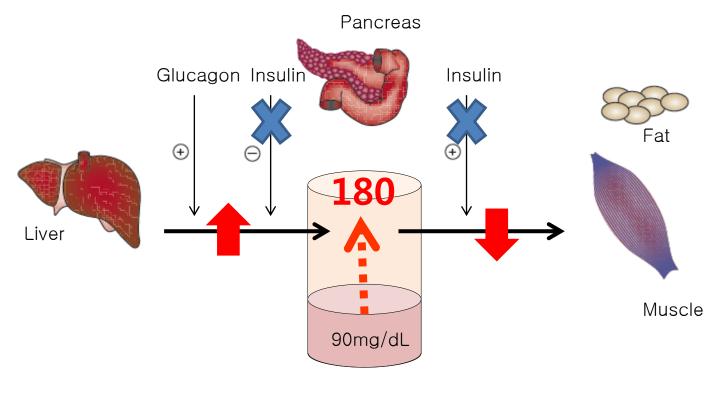

Overview on Sodium-Glucose Cotransporter 2(SGLT2) Inhibitors in Glucose Homeostasis

2013/11/8 Dongguk University, Korea Kyoung-Ah Kim, MD, PhD


Normal renal glucose handling

OUTLINE

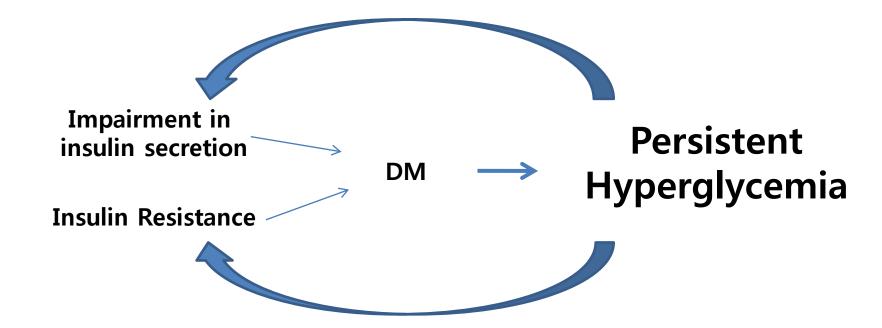
- I. Glucose homeostasis
- II. Renal handling of glucose
- III. Metabolic effects of SGLT2 inhibition
- **IV.** Genetic model of SGLT2 inhibition
- v. Conclusions

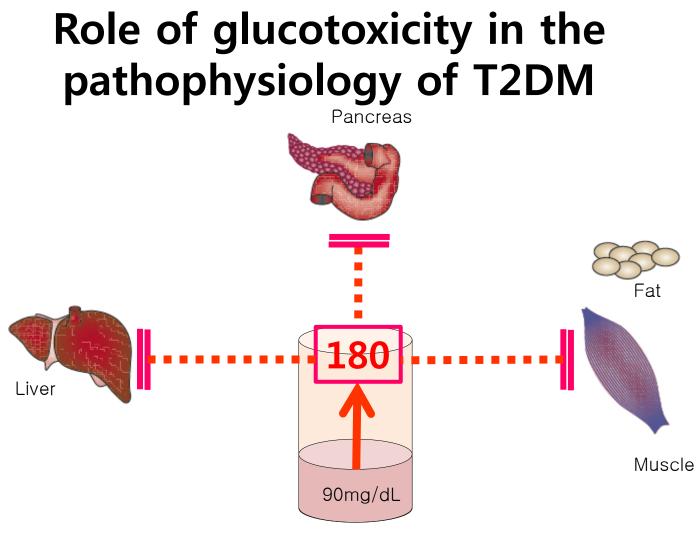

Normal glucose homeostasis

FPG; Fasting plasma glucose

Chao EC, Nat Rev Drug Discov. 2010 Jul;9(7):551-9

Pathophysiology of T2DM




FPG

FPG; Fasting plasma glucose

Hyperglycemia

- =cause of diabetes
- "glucotoxicity" contributes to insulin resistance and impaired insulin secretion

FPG

FPG; Fasting plasma glucose

The Kidneys Play an Important Role in the Handling of Glucose

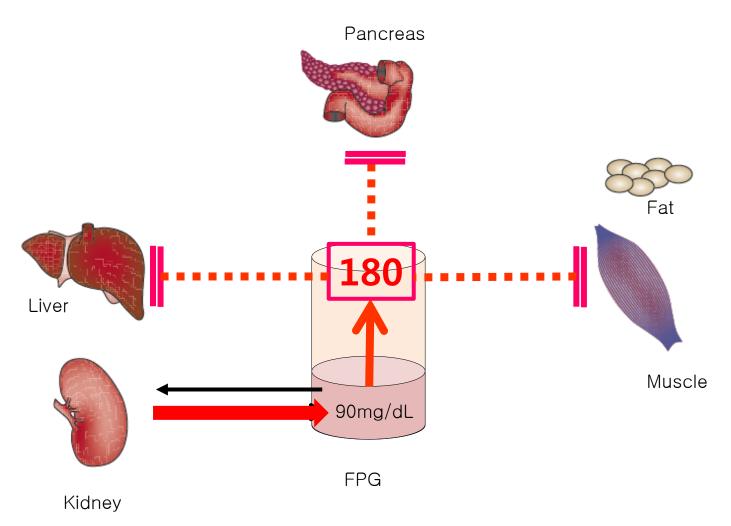
	Non-DM
 Total glucose stored in body 	~450 g/day
 Glucose utilization 	~250 g/day
• Brain	~125 g/day
 Rest of body 	~125 g/day
Glucose in (Western) diet	~180 g/day
 Glucose production (gluconeogenesis + glycogenolysis) 	~70 g/day
 Renal glucose filtration and reabsorption 	~180 g/day (720kcal)
Plasma glucose concentration	~90 mg/dL
 Approximate total blood glucose 	4 to 5 g

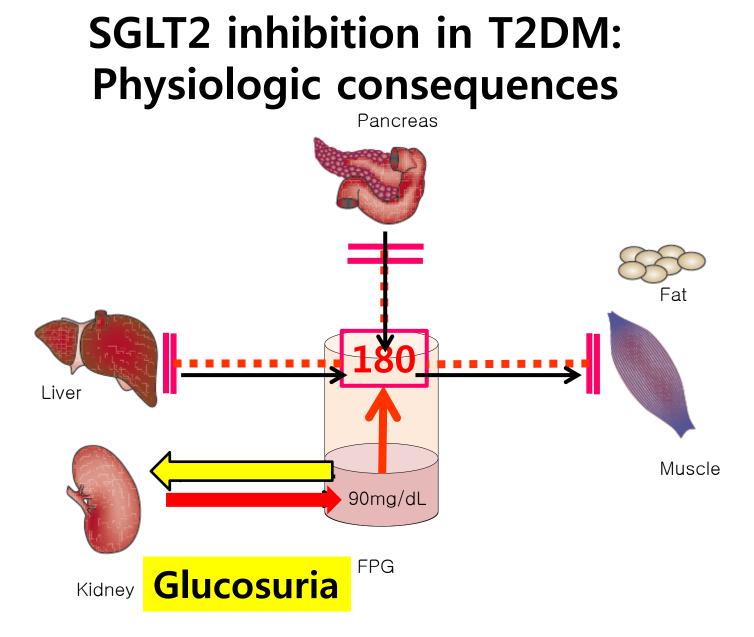
Altered Renal Glucose Control in Diabetes

- Gluconeogenesis is increased in postprandial and postabsorptive states in patients with Type 2 DM
 - Renal contribution to hyperglycemia
 - 3-fold increase relative to patients without diabetes
- Glucose reabsorption
 - Increased SGLT2 expression and activity in renal epithelial cells from patients with diabetes vs. normoglycemic individuals

Marsenic O. Am J Kidney Dis. 2009; Bakris GL, et al. Kidney Int. 2009; 9 Rahmoune H, 3t al. Diabetes.2005.

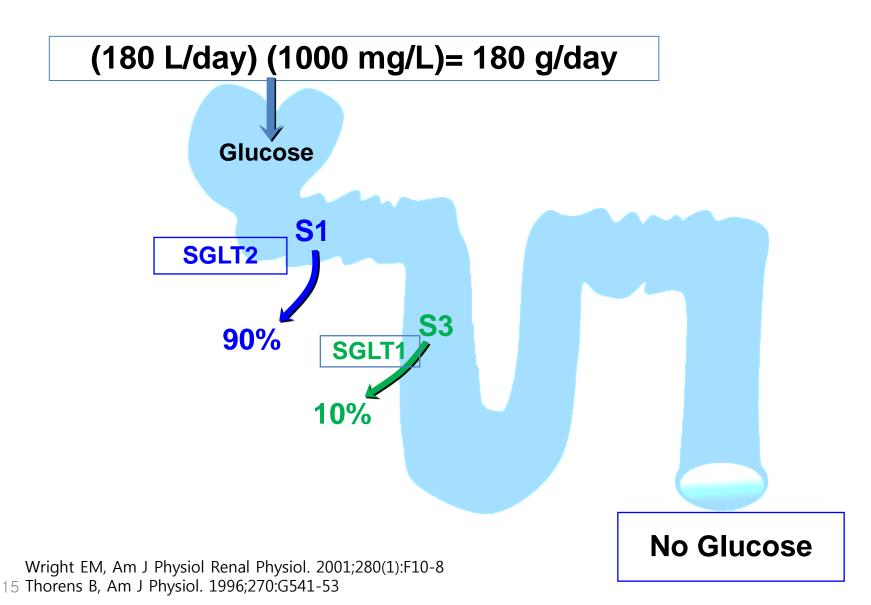
Rationale for SGLT2 inhibitor therapy


 Normalization of the plasma glucose concentration – independent of the mechanism – is a cornerstone of diabetes management


SGLT2 inhibitors-Mechanism of Action

- Inhibit glucose reabsorption in the renal proximal tubule
- The resultant glucosuria leads to a decline in plasma glucose and reversal of "glucotoxicity"
- Simple, nonspecific

Pathophysiology of T2DM

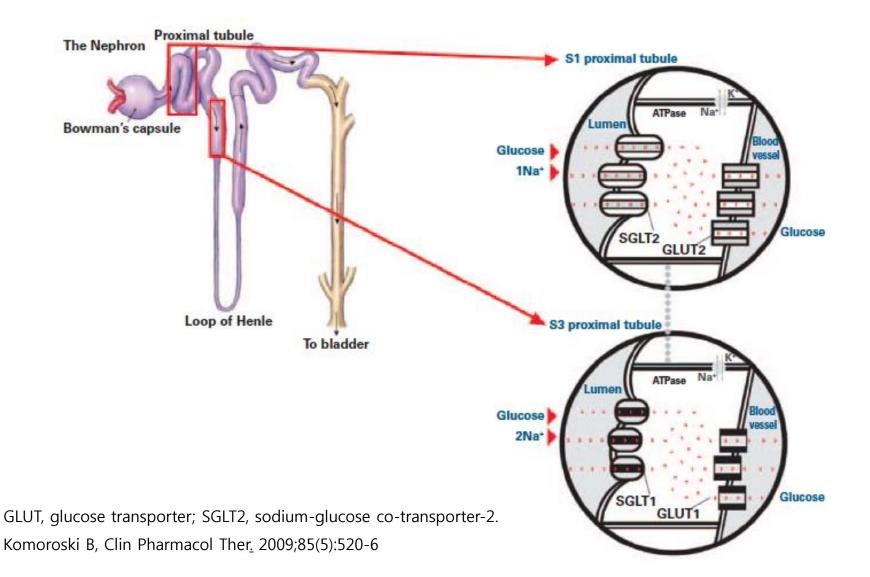


OUTLINE

- I. Glucose homeostasis
- II. Renal handling of glucose
- III. Metabolic effects of SGLT2 inhibition
- **IV.** Genetic model of SGLT2 inhibition
- v. Conclusions

Normal Renal Glucose Handling

Glucose Transporters


- 2 families of glucose transporters¹
- Responsible for²:
 - Absorption of glucose from small intestine
 - Reabsorption from glomerular filtrate
 - Brain uptake across blood-brain barrier
 - Uptake and release of glucose in all cells

16 2. Jabbour SA, Int J Clin Pract. 2008;62(8):1279-84

Two Families of Glucose Transporters

GLUT Family	SGLT Family
<u>Facilitated</u> glucose transporters	<u>Sodium coupled g</u> lucose cotransporter
Passive, downhill transport	Active transport of glucose
 GLUT1 (widespread including the kidneys) GLUT2 (kidneys, pancreas, liver) GLUT4 (muscle & adipose tissue) 	 SGLT 1 (brush border of small intestine) SGLT 2 (proximal tubule)

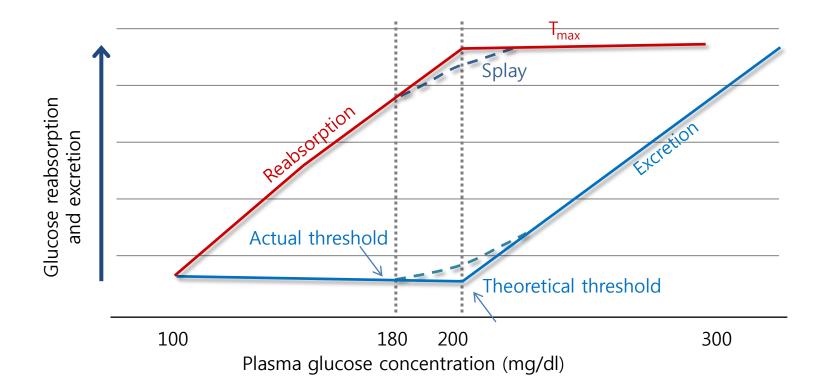
SGLT2 Mediates Glucose Reabsorption In The Kidney

SGLT (Sodium-Glucose Cotransporters)

	SGLT1	SGLT2
Distribution	Mostly intestine, with some kidney	Exclusively kidney
Sugar specificity	Glucose or galactose	Glucose
Glucose affinity	High	Low
	K _m =0.4 mM	K _m =2 mM
Glucose transport capacity	Low	High
Role	 Dietary absorption of glucose and galactose (inhibition : osmotic diarrhea) 	•Renal glucose reabsorption
	 Renal glucose reabsorption 	

Glucosuria reflects the resorptive capacity of renal proximal tubule

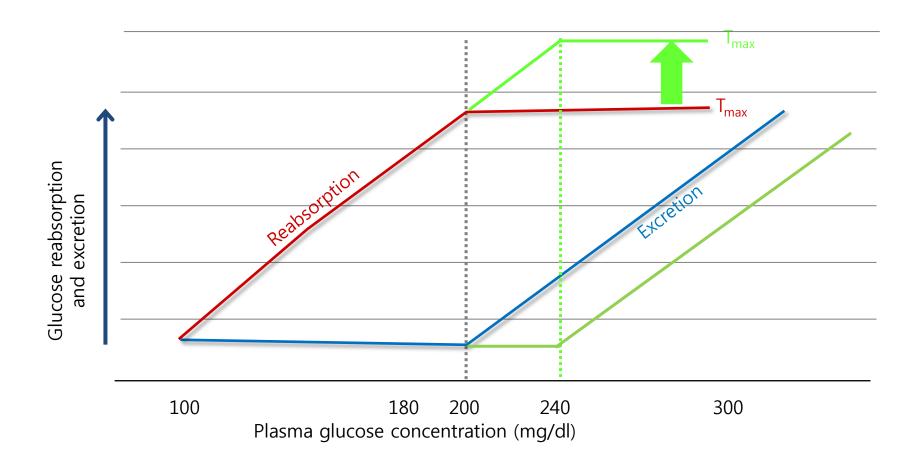
The threshold $Tm_{Glucose}$ represents the maximal resorptive capacity of the proximal tubule

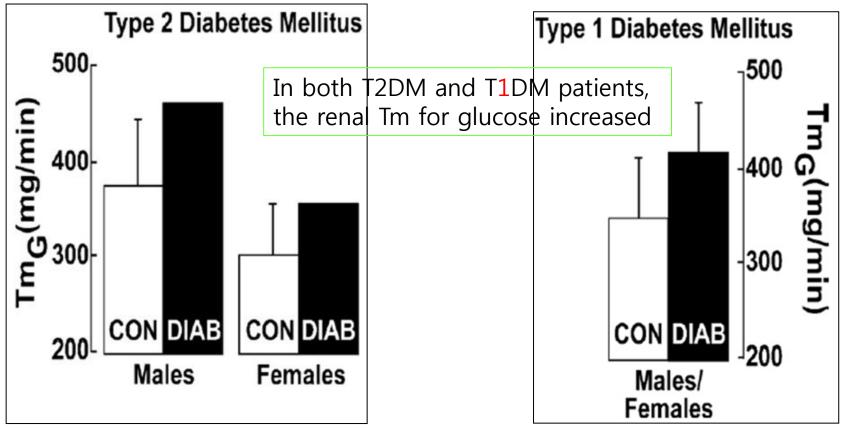


Tm glucose ; maximal glucose reabsorptive capacity

GFR; glomerular filtration rate

20 Adapted from Brenner and Rector's The Kidney, 8th ed. Philadelphia,PA:Saumders;2007.

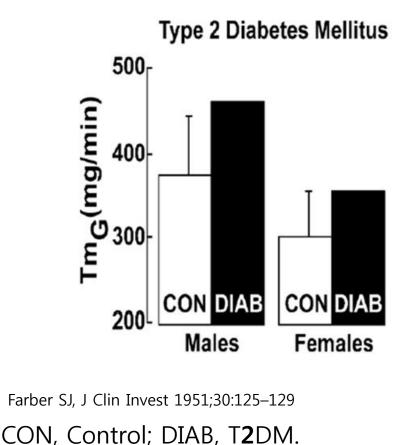

Kinetics of renal glucose handling

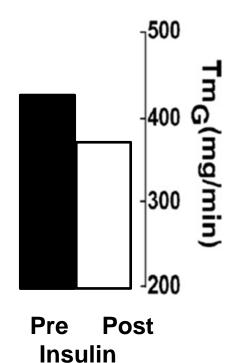

SGLT2, sodium-glucose co-transporter-2; T_{max}, maximal glucose reabsorptive capacity. 21Adapted from: Abdul-Ghani MA, et al. Endocr Pract 2008;14:782–90; Gerich JE. Diabet Med 2010;**27**:136–42.

Hyperglycemia and Renal Glucose Reabsorption

Renal glucose handling in diabetes

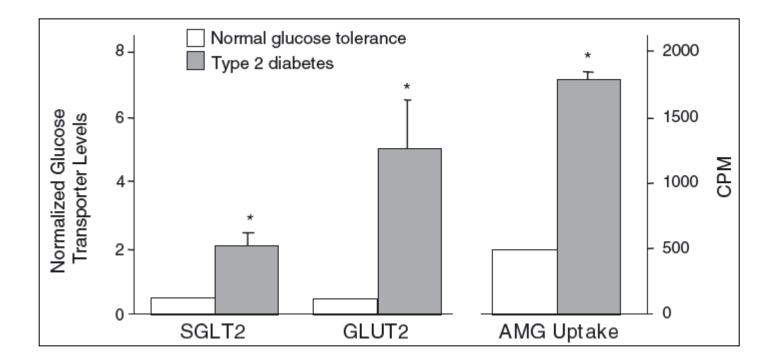
Effect of hyperglycemia on the renal Tm for glucose in T2DM and in T1DM


Faber SJ, J Clin Invest 1951;30:125–129


CON, Control; DIAB, Diabetes

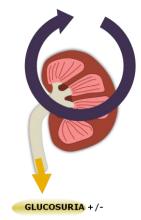
Mogensen CE , Scand J Clin Lab Invest 1971;28:183–193

Effect of T2DM and insulin on the renal Tm for glucose


Correction of the hyperglycemia resulted in a decrease in Tm for glucose and the appearance of glucosuria

25

Increased glucose transporter in human renal proximal tubular cells


Summary : Renal tubular glucose reabsorption in diabetes

- In human T1DM and T2DM, the maximum renal tubular reabsorptive capacity (Tm for glucose) is increased
- Cultured human proximal renal tubular cells demonstrate increased SGLT2/GLUT2 mRNA and protein levels and increased glucose transport(AMG).

GLUCOSE 11

Implications

- An adaptive response to conserve glucose (ie, for energy needs) becomes *maladaptive* in diabetes
 - In the presence of hyperglycemia, it would be desirable for the kidney to excrete the excess filtered glucose load to restore normoglycemia.
 - In contrast, the diabetic kidney has an increased Tm for glucose, thereby minimizing glucosuria and exacerbating the hyperglycemia.
 - Moreover, the ability of the diabetic kidney to conserve glucose may be augmented in absolute terms by an increase in the renal reabsorption of glucose

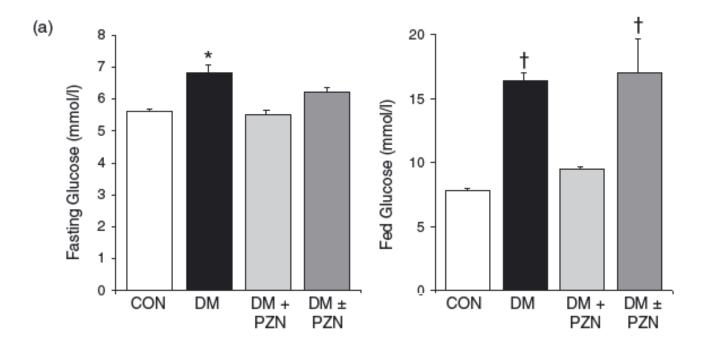
OUTLINE

- I. Glucose homeostasis
- II. Renal handling of glucose
- III. Metabolic effects of SGLT2 inhibition
- **IV.** Genetic model of SGLT2 inhibition
- v. Conclusions

SGLT2 inhibitor in development

- 1835 phlorizin isolated from the bark of apple trees \rightarrow glucosuria
- 1980s ; phlorizin acting on SGLT
- 2000 ; analogs of phlorizin (**gliflozin)

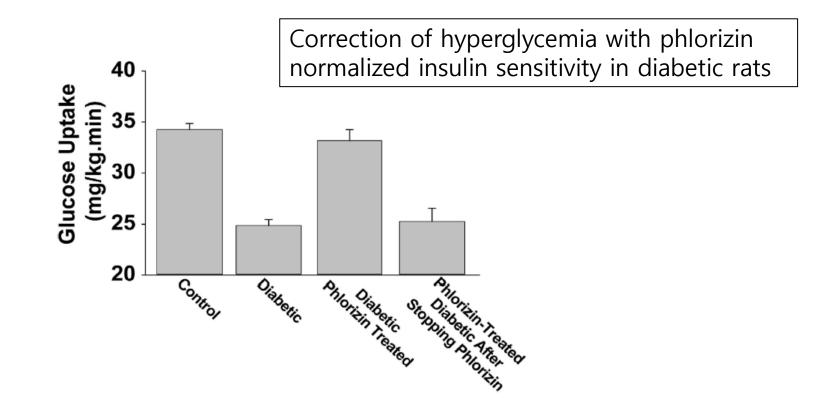
	SGLT1	SGLT2	Selectivity for SGLT 2 <i>vs.</i> SGLT1
Phlorizin	35.6	330	10
T-1095	6.6	211	30
Sergliflozin	9.2	>8000	>90
Dapagliflozin	1.1	1390	1200


Effect of SGLT2 inhibitors on insulin resistance

- Targeting the renal glucose transporter
- →improve glucose homeostasis

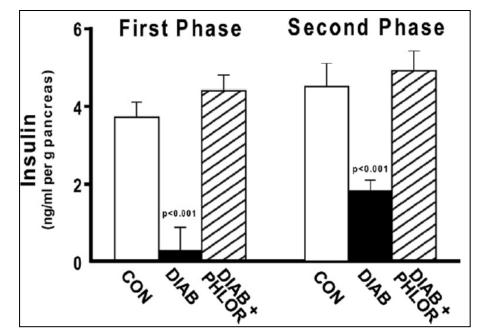
Experimental Protocol

- Sprague-Dawley rats ; treatment period=4 weeks
 - GROUP I– sham operated controls
 - GROUP II– partial(90%) pancreatectomy
 - GROUP III– 90% pancreatectomy + phlorizin sc
 - GROUP IV– {90% pancreatectomy + phlorizin sc} phlorizin


Effects of phlorizin treatment on fasting and fed plasma glucose

Effect of SGLT2 inhibitors on insulin resistance

Experimental Protocol


a 2-step euglycemic insulin clamp

SGLT2 inhibitors and β -cell function

Experimental Protocol

- Sprague Dawley rats; treatment period=3 weeks
 - Group I-sham operated
 - Group II- partial panx (90%)
 - Group III-partial panx + phlorizin
- Hyperglycemic clamp

Mechanism of Action of SGLT2 Inhibitors

Inhibition of renal SGLT2 ⇒ reversal of hyperglycemia ⇒ reversal of "glucotoxicity"

↑ Insulin sensitivity in muscle

↑ Insulin sensitivity in liver

↓ Gluconeogenesis

1 Improved beta cell function

OUTLINE

- I. Glucose homeostasis
- II. Renal handling of glucose
- III. Metabolic effects of SGLT2 inhibition
- **IV.** Genetic model of SGLT2 inhibition
- v. Conclusions

Rationale for SGLT2 Inhibition in Diabetes: Functional Disorders

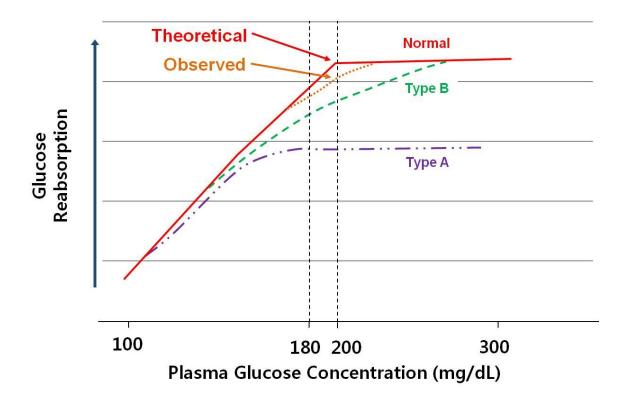
Familial renal glucosuria

• Due to SGLT2 gene mutations

Intestinal glucose-galactose malabsorption

- Due to SGLT1 gene mutations
- Severe diarrhea
 - Suggests major role for SGLT1 in intestinal reabsorption
 - Corrected by removing glucose, galactose, lactose from the diet
- Mild glucosuria consistent with minor SGLT1 role in renal reabsorption

Familiar Renal Glucosuria


- Autosomal recessive
- Rare disorder of renal glucose transport
- Isolated defect of glucose reabsorption
- Mutations of SGLT2
- Characterized by persistent urinary glucose excretion, with normal plasma glucose concentration
- Urinary glucose excretion varies from a few grams to greater than 100g/day

Familial Renal Glucosuria

Presentation	AsymptomaticNo hypoglycemia or hypovolemia
Kidney / bladder	No tubular dysfunctionNormal histology and function
Complications	 No increased incidence of Chronic kidney disease Diabetes Urinary tract infection

2 Types of Familial Renal Glucosuria

Туре А	Туре В
•Decreased Tm for glucose	•Exaggerated splay
•Reduced amount of normal SGLT2 protein	•Reduced affinity of SGLT2 transporter for glucose

40 Santer R, et al. J Am Soc Nephrol. 2003;14:2873-2882.

Analysis of SGLT2 Gene in Patients With Renal Glucosuria

- 23 families analyzed for mutations
- In 23 families, 21 different mutations were detected in SGLT2
- Cause of glucosuria in other 2 families remains unknown

Santer R, et al. *J Am Soc Nephrol.* 2003;14:2873-2882.

Analysis of SGLT2 gene in patients with renal glucosuria

- 14 of 21 individuals were homozygous or compound heterozygous with severe glucosuria = 15~200 grams/day
- Heterozygous family members had mild glucosuria (up to 4.4 grams/day) or no glucosuria
- Nonsense mutations, missense mutations, and small deletions were scattered over the SGLT2 coding sequence

Renal Glucosuria: 20-Year Follow-up of the Original Patient

- On diagnosis at age 11:
 - 109-140g glucose excreted per day
 - Persistent nocturnal enuresis
 - Polyuria and polydipsia
 - Episodes of polyphagia
 - Marked delay of growth and puberty
- On reevaluation at age 31:
 - Reached a final height of 175cm and weight of 74kg; BP 125/85mmHg
 - No sign of hyperfiltration syndrome or microalbuminuria
 - Continued polyuria 3-5 L/day
 - Creatinine :0.6mg/dL; creatinine clearance;135mL/minute
 - No chronic nephrologic complications observed

V. CONCLUSIONS

- SGLT2 inhibition represents a novel approach to the treatment of Type 2 DM
- Studies in experimental models of diabetes have demonstrated that induction of glucosuria restores normoglycemia and improves beta cell function and insulin sensitivity-reversal of glucotoxicity
- Genetic mutations leading to renal glucosuria have documented the long term safety of SGLT2 inhibition in man